Check for
Updates

An Ensemble Machine Learning Approach for
Benchmarking and Selection of scRNA-seq Integration Methods

Konghao Zhao, Sapan Bhandari, Nathan P. Whitener, Jason M. Grayson and Natalia Khuri
Wake Forest University
Winston Salem, North Carolina, USA
natalia. khuri@wfu.edu

ABSTRACT

Accurate integration of high-dimensional single-cell sequencing
datasets is important for the construction of cell atlases and for the
discovery of biomarkers. Because the performance of integration
methods varies in different scenarios and on different datasets, it is
important to provide end users with an automated system for the
benchmarking and selection of the best integration among several
alternatives. Here, we present a system that uses an ensemble of
auditors, trained by supervised machine learning, which quanti-
fies residual variability of integrated data and automatically selects
the integration with the smallest difference between observed and
expected batch effects. A rigorous and systematic validation was
performed using 6 popular integration methods and 52 benchmark
datasets. Algorithmic and data biases were uncovered and short-
comings of existing validation metrics were examined. Our results
demonstrate the utility, validity, flexibility and consistency of the
proposed approach.

CCS CONCEPTS

«+ Applied computing — Bioinformatics; - Computing method-
ologies — Supervised learning by classification.

KEYWORDS

Benchmarking, classification, data integration, machine learning,
single-cell RNA sequencing

ACM Reference Format:

Konghao Zhao, Sapan Bhandari, Nathan P. Whitener, Jason M. Grayson
and Natalia Khuri. 2023. An Ensemble Machine Learning Approach for
Benchmarking and Selection of scRNA-seq Integration Methods. In 14th
ACM International Conference on Bioinformatics, Computational Biology and
Health Informatics (BCB ’23), September 3—6, 2023, Houston, TX, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3584371.3613072

1 INTRODUCTION

Due to the improvements in efficiency, scalability and affordabil-
ity of single-cell RNA-sequencing (scRNA-seq) technologies, it is
now possible to study the complexity and heterogeneity of gene
expression within individual cells, as well as the composition of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

BCB ’23, September 3-6, 2023, Houston, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0126-9/23/09...$15.00
https://doi.org/10.1145/3584371.3613072

cell types and cell states within different tissues, organs and or-
ganisms [15, 21, 30, 38]. Often, multiple scRNA-seq datasets are
integrated together to increase the statistical power of data min-
ing [4, 29] and to create cell atlases, such as the Human Cell At-
las [25], for example. The integrated datasets may come from dif-
ferent biological samples, donors, sequencing centers or sequenc-
ing platforms. Collectively, the complex technical variations in
sequencing protocols, collection time, sample acquisition and han-
dling, reagents and data preprocessing are known as the batch
effects [14, 19, 34].

Computationally, integration of scRNA-seq datasets involves
two optimization objectives. Firstly, biologically similar cells from
different datasets should be well mixed to remove technical vari-
ations due to batch effects. Secondly, biologically dissimilar cells
should be well separated in the integrated data to preserve their
distinctness. Optimizing for these two objectives is challenging, in
part because true technical and biological variability of integrated
datasets is not always known.

Past benchmarking studies used a combination of qualitative
and quantitative approaches to evaluate existing integration meth-
ods [8, 19, 33]. Although past benchmarking studies provided useful
information about the strengths and weaknesses of different integra-
tion methods, such as their performance, computational run-time,
and memory requirements, they also revealed that no integration
method outperforms other methods in all benchmarking scenarios
and on all benchmark datasets [8, 19, 33]. It was also found that
the performance of different methods was greatly influenced by
the choice of pre-integration and post-integration techniques for
highly variable gene (HVG) selection, normalization, scaling, dimen-
sionality reduction and cluster analysis [19]. Given that methods
perform differently for different integration scenarios, datasets and
data preparation approaches, and that past benchmarking results
present only a static view of existing integration methods, it is
challenging for the end users to decide on the best integration for
their specific data mining needs.

Here, we present a new approach, called Machine Learning Based
Integration Method Selection (ML-IMS), for the evaluation of inte-
gration results and benchmarking of existing and emergent inte-
gration tools. ML-IMS trains integration auditors, which estimate
residual variability in low-dimensional matrices of integrated data.
The primary objective of ML-IMS is to evaluate the degree to which
different datasets (batches) have been mixed together. Specifically,
the auditors are trained to predict identities of the batches using a
balanced subset of integrated data, and trained models are used to
label the low-dimensional representation of cells in the withheld
subset of integrated data (Figure 1). The main idea behind this is that
if cells are well-mixed, it should be difficult to predict which batch

https://doi.org/10.1145/3584371.3613072
https://doi.org/10.1145/3584371.3613072
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584371.3613072&domain=pdf&date_stamp=2023-10-04

BCB 23, September 3-6, 2023, Houston, TX, USA

Konghao Zhao, Sapan Bhandari, Nathan P. Whitener, Jason M. Grayson and Natalia Khuri

I Data and Batches

l

/\ ’ Integrated Data and Annotations l
fastMNN Harmony Ingest
i S \

Balanced Sampling

’Stratiﬂed Split]L>[Train

= %

30%

I FFNN Auditor XGB Auditor

Custom Auditor

Il N I

Compute IMS Score

Il I

Y

I Select By Ranking

\
I
I
I
I
I
‘
I Balanced l .
I
I
|
I
i
I
i
'

Machine Learning Based Integration Method Selection (ML-IMS)

Figure 1: Architecture of Machine Learning Based Integration Method Selection. Shown are the main steps of the proposed
system for benchmarking and automated selection of the best integration. ML-IMS inputs low-dimensional integrated data,
executes ML audits and computes IMS scores for each input. By default, the integration with the smallest IMS score is selected.

they came from, beyond a random chance. If, however, the integra-
tion fails to correctly mix biologically similar cells from different
batches, identities of individual batches of cells can be predicted
more accurately than by random chance. When presented with
several low-dimensional integrated datasets, ML-IMS performs the
audit and automatically selects the one with the smallest difference
between its observed and expected classification accuracy. Notably,
the same approach can be used to examine how well the biological
variability is preserved. Instead of using batch labels, ML-IMS can
use biological cell types, for example, to train the auditors and select
integrated data with the greatest difference between expected and
observed classification accuracy.

In this work, we made the following contributions. First, we
designed and implemented an automated system for the evaluation
of residual variability of integrated data and selection of the best
integration result. The system is implemented as an open-source,
extendable package in the Python programming language, which
accepts as input low-dimensional integrated data and their class
labels and outputs IMS scores. The IMS score measures the differ-
ence between the expected classification accuracy and the observed
classification accuracy, averaged across class labels and across an
ensemble of auditors. Second, we validated ML-IMS in rigorous and
systematic experiments using 6 popular integration methods and 52
datasets, and compared and contrasted IMS with existing metrics,
such as kBET [5] and Lisi [17, 18]. Our experimental results can
be used in future benchmarking studies of emergent integration
methods. Third, we demonstrated that ML-IMS can detect algorith-
mic biases of integration methods as well as data biases caused by
different sequencing technologies, preprocessing and experimental
conditions at individual sequencing centers.

2 PRIOR AND RELEVANT WORK

Approaches for the evaluation of integration results can be divided
into two groups. The first group focuses on the evaluation of meth-
ods and the second group focuses on the evaluation of results by
quantifying the quality of the integrated data.

Several benchmarking studies of integration methods have been
recently performed, varying in their experimental designs, datasets,

evaluation criteria and metrics. In one of the earliest benchmarking
studies [33], 10 datasets were integrated using 5 different scenarios,
such as the integration of non-identical cell types, large datasets and
simulated datasets. Fourteen integration methods were reviewed
for their performance, scalability and computational time. Later, as
part of an effort to create a reference scRNA-seq dataset, 2 well-
characterized, commercially-available cell lines were sequenced
on 4 different platforms, at 4 different sequencing centers and pre-
processed in 7 different ways. Performance of 7 different integra-
tion methods was then examined using these datasets and their
mixtures [8, 9]. More recently, a comprehensive benchmarking
study of integration methods for the construction of cell atlases
was performed that evaluated 68 combinations of methods and
preprocessing techniques on 85 batches [19].

The main outcome of past benchmarking studies is the recog-
nition that different integration tasks, different datasets, and dif-
ferent preprocessing methods produce different results, and that
no integration method performs well in all scenarios. Some of the
challenges noted in prior studies include differences in integration’s
inputs and outputs, inconsistencies in preprocessing, lack of good
benchmarking datasets and evaluation metrics, and poor accessi-
bility and adaptability to the needs of end users. The majority of
these limitations continue to persist, although some recent works
addressed some of them. For example, to support the evaluation
of new integration methods and to improve adaptability to new
benchmark datasets, BatchBench package provides programmatic
support for the creation of a pipeline for different benchmarking
experiments [6]. Similarly, scrnabench package comprises a suite of
benchmarking datasets and standardized benchmarking workflows,
which include data preparation and integration [35]. While both
of these packages make benchmarking more accessible and adapt-
able, they are still limited by the lack of objective and interpretable
metrics for the evaluation of integration results.

There are two computational approaches for the assessment of
integration results, qualitative evaluation and quantitative valida-
tion. Qualitative evaluation by visualization is commonly used [5, 6,
8, 33, 39]. However, the interpretation of visualizations is subjective
and only possible for a small number of cells. Because integrated

Automated Benchmarking and Selection of scRNA-seq Integration Methods

data are projected onto a low-dimensional space, visualizations may
not capture all aspects of the data, potentially ignoring subtle vari-
ations or patterns that could impact the assessments. Additionally,
datasets integrated using different methods may exhibit different
shapes in the low-dimensional space, making it challenging for the
interpreter to distinguish the minor differences between the results.

Entropy is an example of a quantitative metric. It was used in
early benchmarking studies [2, 6, 39]. It is calculated by averaging
the local Entropy of each batch, where local Entropy is calculated
as the negative sum of the probability that a cell has a certain batch
in its local neighborhood multiplied by the logarithm of that proba-
bility [27]. A high entropy means a homogeneous mixture of the
batches. In later studies, two new quantitative metrics were pro-
posed, namely kBET [5] and Lisi [18]. Past benchmarking studies,
as well as the results of this work, noted that kBET and Lisi can
give contradictory assessments, making it challenging to decide on
the best integration approach.

Ranging from 0 to 1, kBET estimates residual batch effects by per-
forming repeated Pearson’s y? test based on the randomly selected
neighborhoods, and the results are averaged as a rejection rate over
all tested neighborhoods. In other words, kBET determines whether
the batch composition of a neighborhood of a cell is similar to the
expected composition. To do so, it constructs a neighborhood graph,
where the size of the neighborhood is a user-defined parameter.

Lisi estimates batch effects by computing a diversity score, which
ranges from 0 to the number of batches. Specifically, Lisi uses
Gaussian kernel-based distribution to construct neighborhoods
with distance-based weights for cells [18]. It measures the effec-
tive number of batches in a local neighborhood and computes a
diversity score for each cell. It has been recently shown that even
with the well-mixed local neighborhoods, the value of Lisi may
be significantly smaller than the number of batches, which is the
optimal value for a well-mixed dataset, due to the imbalance in
sizes of integrated datasets [18].

The main shortcoming of Entropy, kBET and Lisi is their re-
liance on distance computation, which is needed to define local
neighborhoods and find cells within those neighborhoods. Limita-
tions of distance-based approaches are well-known and include, for
example, the choice of the best distance metric, the curse of dimen-
sionality, arbitrary selection of the neighborhood radii, and so on.
Specific to the integration tasks, kBET and Lisi may overestimate
the performance of methods that use graph-based approaches in the
integration of the datasets and underestimate the performance of
methods that do not rely on the construction of the neighborhood
graphs.

Our proposed method can be used for benchmarking of new
and existing integration methods as well as for the evaluation of
the quality of integrated datasets. Unlike kBET and Lisi, ML-IMS
does not rely on the computation of neighborhood graphs, thus
providing an orthogonal information about the performance of
distance-based integration methods.

3 METHODS AND DATA
3.1 Proposed Method

ML-IMS is an automated and extendable approach for the selection
of the best integration. Given several datasets, which are integrated

BCB ’23, September 3-6, 2023, Houston, TX, USA

using different methods, along with their labels, ML-IMS performs
supervised audits to quantify the residual variability of each class
label. An aggregated audit score is computed by averaging the
classification results of an ensemble of auditors and across class
labels (Figure 1).

The audit is conducted as follows. First, each integrated dataset
is balanced by random sampling of an equal number of cells of
each class label, without replacement. During the audit, integrated
data are repeatedly divided into balanced training (70%) and test
(30%) subsets, and the training data are used to train several ML
classifiers. Following a previously established protocol [32], we
repeatedly sample 20% of cells from the withheld test subset and
predict their labels using each of the trained classifiers. Sampling
from test data is repeated 20 times, after which integrated data
are divided again into training and test subsets, and the audit is
repeated. The number of repeated iterations is determined by the
user. In this work, we repeat each audit 100 times to obtain robust
estimates. Because training and test sets are balanced, intuitive
metric of classification accuracy can be computed for each class
label, measuring the number of correctly predicted labels of each
class divided by the total number of cells of each class. Classification
accuracy is averaged over all test subsets and over the total number
of iterations.

To facilitate an automated selection of the integrated dataset, an
Integration Method Selection (IMS) score is computed as follows.
Given n batches and m auditors, the difference between the observed
classification accuracy of batch i by auditor j, obs;;, and the baseline
expected accuracy, % is calculated. These differences are averaged
for n batches and m auditors (Equation 1).

%Z (obs,-j - %)} 1)

i=1

m

1
IMS:;Z

J=1

When class labels are batches, integrated dataset with the lowest
score is selected. When, on the other hand, class labels are biological
cell types, for example, integrated dataset with the highest score is
automatically selected.

3.2 Implementation Details

ML-IMS is an open source and publicly available at https://github.
com/SheltonZhaoK/ML-IMS. The modular architecture of the pack-
age allows for an easy substitution, removal or addition of auditors.
By default, ML-IMS includes two auditors, namely, a feed forward
neural network (FFNN) and an eXtreme gradient boosting (XGB)
tree. These algorithms are selected due to their accuracy of cell-
type prediction [3, 20, 24, 31] and their parameters were tuned as
previously described [3].

FFNN auditors are implemented as the multi-class predictors
using the Tensorflow and Keras libraries [1]. FFNN comprises input
layer, one hidden layer with 512 hidden nodes and output layer.
The number of nodes in the input layer is set to the number of data
dimensions, and the number of output nodes is equal to the number
of classes. ReLU activation function is used in the hidden layer and
softmax activation function is used in the output layer. Categorical
cross-entropy is used as the loss function because the network has
more than 2 class labels. In addition, RMSprop optimizer is used

https://github.com/SheltonZhaoK/ML-IMS
https://github.com/SheltonZhaoK/ML-IMS

BCB 23, September 3-6, 2023, Houston, TX, USA

with the learning rate of 1E-4. The models are trained in batches of
size 128 for 50 epochs.

XGB auditors are implemented as the multi-class classifiers using
XGBoost package [7]. The following parameters are used to train
the classifiers: ‘max_depth’: 4, ‘eta’: 1, ‘objective’: ‘multi:softprob’,
‘eval_metric’: ‘mlogloss’, and ‘num_round’: 50. Gradient boosting
is the process of combining weak learning decision trees to create
a stronger model.

To demonstrate how ML-IMS can be extended to include ad-
ditional auditors, we also implement a distance-based k-Nearest
Neighbor (KNN) classifier using KNeighborsClassifier function
from the Scikit-learn package [22]. We use Euclidean distances
and set k to 15 [3].

ML-IMS implementation also includes support for parallel exe-
cution of audits, which is implemented using Python’s multipro-
cessing module. In this work, all experiments are performed on a
High Performance Computing cluster.

3.3 Datasets

Three data sources are used in this study. We use 48 benchmark
datasets of 2 cell lines from the scrnabench package [35], 3 datasets
from the SeuratData package [26] and 1 dataset from a recent bench-
marking study [19].

The 48 benchmark datasets are extracted from scrnabench, which
links to their original repository [9]. These data are from 2 cell lines
derived from breast cancer (cell line A) and normal B lymphocytes
(cell line B). The number of sequenced cells ranges from 59 to 6,097,
and the number of genes ranges from 16,931 to 32,502. Each cell
is annotated with its cell line, sequencing technology (10X, C1,
C1_HT, ICELLS), center (LLU, NCI, FDA, TBU), and preprocessing
method (cellranger2.0, cellranger3.1, zumi, umitools, featureCounts,
rsem, kallisto). In addition, each cell is labeled with the name of its
dataset and a unique cell identification number.

We also retrieve 3 benchmark datasets from the SeuratData pack-
age that stores sequenced data and their annotations. Specifically,
we use panc8 [11] benchmark of 8 datasets of human pancreas cells
sequenced on 5 different platforms. The entire collection contains
14,890 cells and 14,890 genes. Due to the limited amount of cells,
cells sequenced by fluidigmc1 technology are excluded, leaving 4
datasets (celseq, celseq2, smartseq2, indrop). The second bench-
mark dataset, pbmcsca [10], consists of 31,021 peripheral blood
mononuclear cells (PBMC) and 14,053 genes, sequenced on 9 differ-
ent platforms. After removing batches with low counts of cells, 7
batches (10x Chromium (v2), 10x Chromium (v2) A, 10x Chromium
(v2) B, 10x Chromium (v3), Drop-seq, Seq-Well, inDrops) are re-
tained. Finally, we use the ifnb benchmark [16] comprising 14,000
PBMCs with 14,053 genes. Cells are either stimulated by IFN-f or
left untreated, resulting in two class labels (STIM, CTRL). The last
dataset, bone_marrow is the cell-atlas benchmark used in the past
benchmarking study [19]. It comprises 7 samples (SIGAGS, SIGAF1,
SIGAH]1, SIGAD1, BoneMarrowcKit1_dge, BoneMarrowcKit2_dge,
BoneMarrowcKit3_dge) of mouse cells, sequenced using 2 different
technologies (10X Genomics and Microwell-seq).

All datasets are preprocessed and integrated using the same, pre-
viously published workflows [37] implemented in scrnabench [35]
and Scanpy [36] packages. We compare 6 integration methods: 4

Konghao Zhao, Sapan Bhandari, Nathan P. Whitener, Jason M. Grayson and Natalia Khuri

methods are implemented in the R programming language, namely
CCA [28], fastMNN [13], Harmony [17], and SCTransform [12], and
2 methods are implemented in the Python programming language,
namely BBKNN [23] and Ingest [36]. For integration performed in
Scanpy, benchmarks are first prepared using scrnabench’s prepa-
ration workflow, then converted to .h5ad format, imported into
Scanpy and integrated. This ensures that all data are prepared us-
ing the same standard workflow.

The scrnabench workflow loads each dataset into a Seurat object
and filters them as follows. Cells containing fewer than 200 genes
are removed and genes detected in fewer than 2 cells are filtered
out. Next, the total number of mRNAs and total number of genes
are counted for each cell, and cells with the total number of mRNAs
and total number of genes outside of 2 standard deviations from
the mean counts are removed. Additionally, cells with more than
10% mitochondrial counts are filtered out and top 2,000 HVGs are
selected.

For BBKNN workflow, matrix of HVGs is converted to .h5ad
format and read into Scanpy. Then, sc.pp.scale function is called
to scale the dataset, which is further reduced to 10 principal com-
ponents by the sc.tl.pca function. The integration is performed
using the sc.external.pp.bbknn function and reduced to 2 UMAP
embeddings. The CCA integration works with the count matrix
of HVGs, by finding integration anchors and then integrating the
data. The k filter parameter is changed from the default 200 to the
number of cells in the smallest dataset to allow for the integration
of smaller datasets. Then, integrated data are scaled and subjected
to a dimensionality reduction using PCA, followed by a non-linear
reduction using UMAP. FastMNN is an integration that combines
scaling and normalization. Therefore, the matrix of HGVs is di-
rectly integrated with batch names as input, followed by the UMAP
reduction. For Harmony integration workflow, the count matrix
of HVGs is scaled and reduced to 10 principal components. Har-
mony integration is performed using datasets’ names as the batch
identifiers, and harmonized embeddings are reduced to 2 UMAP
components. The Ingest integration workflow integrates HVGs and
annotations of batches using the first batch as a reference, by de-
fault. It reduces the first batch by PCA, constructs a kNN graph, and
reduces it to UMAP embeddings. Then, it processes other batches
similarly, repeatedly mapping batches to the reference batch by the
sc.tlingest function, and finally concatenates the data. SCTransform
integration workflow follows a process similar to CCA, except that
it executes Seurat’s SelectIntegrationFeatures function, followed
by PrepSCTIntegration. Integrated data are reduced to 2 UMAP
embeddings.

Thus, the outputs of all integration methods are 2-dimensional
UMAP embeddings and cells’ annotations, which are saved as sep-
arate comma-separated values (csv) files. Cell’s unique identifier
is used as a key to cross-reference the UMAP and the annotation
data. These 2 csv files are used as inputs to the ML-IMS package.

3.4 Additional Metrics

For comparison, we compute Lisi and kBET. Lisi scores range from
0 to the number of batches. To compare these scores to IMS, we
normalize them by dividing Lisi by the total number of batches,
l’—,fl Therefore, normalized scores range from 0 to 1, where higher

Automated Benchmarking and Selection of scRNA-seq Integration Methods

score represents a better quality of integration. kBET computes
the overall averaged rejection rate across 100 tests. Therefore, in
order to ensure a fair comparison with ML-IMS, we average KBET
P-values of cells across all batches. Thus, kBET ranges from 0 to 1,
where higher score represents a higher confidence that integrated
data are well-mixed.

4 RESULTS

Our results demonstrate that ML-IMS can detect algorithmic bi-
ases in the integration methods. Here, the algorithmic bias refers
to systematic and repeatable errors in an integration method that
consistently “favors” one of the batches over the others. Consider
the following proof-of-concept experiment, in which we integrate 4
identical copies of each of the 48 benchmarks from the scrnabench
package. After the integration, we reduce each dataset to 2 UMAP
embeddings. If the integration process is unbiased, dataset’s copies
should be well-mixed, and it should be challenging to discern, be-
yond a random guess of 0.25, the identity of these 4 copies. A biased
integration, on the other hand, will manifest itself when the audi-
tors, trained with UMAP data, classify cells of one (or more) of the
copies with an accuracy greater than 0.25.

We run this experiment using two ML auditors, FFNN and XGB,
and perform 100 audits of 48 integrated datasets, each with 20 ran-
domly sampled and balanced tests. FFNN and XGB are selected
because they are used in previously reported cell-type predictors,
and because their algorithms are not distance-based. Our bench-
mark datasets vary in complexity, size, sequencing platform and
preprocessing type, allowing us to isolate algorithmic biases from
batch effects. Each benchmark comprises cells from either normal
or cancer cell line. To obtain robust estimates, for each duplicated
copy of a dataset, we average classification accuracy scores of 2,000
repeated training and test experiments.

Our results show that all integration methods, except Ingest,
successfully mix duplicated copies and these copies are indistin-
guishable in the integrated data, beyond the random chance. The
average accuracy of classifying copies across all 48 datasets is below
0.25, regardless of the sequencing method, center, preprocessing or
size. The average accuracy of classification using FFNN is 0.21 +
0.02, 0.20 = 0.02, 0.22 + 0.02, 0.21 + 0.03, per copy, and the average
accuracy of XGB is 0.14 + 0.04, 0.14 + 0.05, 0.14 + 0.05, 0.14 + 0.04
(Figure 2).

On the other hand, audits of Ingest integrations show that the
accuracy of classification is notably and consistently higher than
0.25 for the first copy and smaller than the random guess for the
remaining 3 copies (Figure 2E). Specifically, the accuracy of classifi-
cation of the first copy is 0.31 (FFNN) and 0.46 (XGB), whereas the
classification accuracy of each of the other copies is 0.21 (FFNN)
and 0.04 (XGB). These results point to an algorithmic bias in the
decision-making process of Ingest method. This bias may be due to
Ingest’s approach of using the first copy as a reference batch [36].
Moreover, these results are reproducible. Even when the copy la-
bels are swapped prior to the audits, ML-IMS consistently classifies
the same copy more accurately than expected by chance. Notably,
although CCA and SCTransform also use the first copy as the refer-
ence, they do not introduce algorithmic biases in their integration
results.

BCB ’23, September 3-6, 2023, Houston, TX, USA

We note that the average per-copy classification accuracy of
FFNN audits is higher than of XGB, and the standard deviation is
smaller, for all integration methods except Ingest. Also, the average
per-copy accuracy of FFNN is slightly higher than the baseline for
some cancer benchmarks, such as the benchmarks sequenced using
10X Genomics at NCI and preprocessed using cellranger3.1 and
zumi. These differences, however, are not statistically significant.
On the other hand, for Ingest, XGB auditor has significantly greater
classification accuracy of the first copy compared with FFNN-based
auditor, reaching above 0.89 in some of the benchmarks (Figure 2E).
These benchmarks are all from datasets sequenced using C1 tech-
nology at LLU. In addition, Ingest’s integration of 10X Genomics
datasets has smaller algorithmic bias compared with datasets se-
quenced using C1, C1_HT and ICELLS.

To validate these results, we compute kBET, and Lisi metrics.
In well-mixed datasets with 4 batches, kBET P-value and normal-
ized Lisi should be close to 1. Indeed, the average kBET P-value
and normalized Lisi on 48 benchmark datasets for all integration
methods, except Ingest, are 1.00 + 0.00 and 0.96 + 0.01. For Ingest,
kBET P-value and normalized Lisi are 0.96 + 0.09, and 0.90 + 0.04.
While there are drops in the average kBET and Lisi scores, it is dif-
ficult to interpret them because no threshold exists for these scores
which can separate good integration quality from poor. ML-IMS,
on the other hand, provides an easily interpretable and comparable
classification score as well as the threshold of what is expected by
random chance in a balanced dataset.

While per-batch classification accuracy helps detect algorithmic
biases, it may not always be practical or useful to focus on the
individual batches. Therefore, we aggregate per-batch accuracy
values by averaging them into a single classification accuracy score,
which can be used for the comparison and ranking of different
integration results. Thus, average classification accuracy higher
than expected by random chance implies larger residual batch ef-
fects in the integrated data and lower average accuracy means
better integration results. The trade-off is that averaged accuracy
may miss algorithmic biases, such as the one discovered in Ingest’s
integration.

To illustrate how to use the averaged classification accuracy
to detect batch effects due to data preprocessing, we integrate 48
scrnabench datasets as follows. We construct 14 groups of datasets,
where each group comprises datasets of the same cell line (cancer
or normal), sequenced in the same center (LLU, NCI, FDA or TBU)
and on the same platform (10X Genomics, C1, C1_HT, or ICELLS)
but preprocessed differently. Four different preprocessing methods
were used for 10X Genomics data and three different methods were
used for other sequencing platforms. We integrate these 14 groups
using preprocessing as the class label. Therefore, the expected clas-
sification accuracy for 10X integrations is 0.25 and for all other
integrations, it is 0.33.

Our results reveal several patterns. First, integration of cells of
cancer line is more challenging than the integration of normal cells
(Figure 3). Our auditors detect more uncorrected batch effects in
the cancer cell line. Overall, the classification scores of the inte-
grated cancer cells are 0.30 (FFNN) and 0.27 (XGB) compared to 0.28
(FENN) and 0.25 (XGB) for the normal cells. This means that dif-
ferent preprocessing methods produce significantly different gene
expression profiles of the same scRNA-seq data. These variations

BCB 23, September 3-6, 2023, Houston, TX, USA Konghao Zhao, Sapan Bhandari, Nathan P. Whitener, Jason M. Grayson and Natalia Khuri

10 “1.0 “10

08 08 08

o
=

Accuracy
Accuracy
Aceuracy

04 04 04

e T e e MR R R (R

2 3
A F. fastMNN

0.8 08 M 08

2 0.6

Accuracy
o
Y
Aceuracy
Accuracy
° o
ks >

~ Fa T '}? = T_; 'fa 'i'ﬁ [Tl e &

0.

1 2 3 4 2
Harmony Ingest SCTransform
HE FFNN B XGB

Figure 2: Audit of algorithmic biases of 6 integration methods on 48 benchmark datasets. Shown are the box plots of the
distributions of classification accuracy scores of each of the 4 copies in the data integrated by (A) BBKNN, (B) CCA, (C) fastMNN,
(D) Harmony, (E) Ingest, and (D) SCTransform. Red dashed line shows the expected classification accuracy of 0.25. Audits are
performed 100 times for each dataset and results are averaged.

1.0+ 1.0+
E‘OAS go‘gA
E E}
< 0.6 < 0.64
S04 = 0.4 i ‘_ é_ i
3 *Ts, g e il s g C W) Bp. N B
02 021 88 P EFaly g W TR
. ¢ . e g -
00— 001 —
0 O S < O > O S < <
& © \f\ % <) S > ¥ S NS 3 b
& © ARV & L ARV AERY
D O NS A R -
Clon S R MR Lo S o ¢«
208 % 0.8
< <
5 5
3 51
< 069 < 061
& i
S04 3044 #
PPN 1 PP S ity
e - -
0.24%% 2 028 e Bl oo~
£y =B
]
001 — 001 —
S N S < < > O S < S
\»\’0 ,Q 07\ v yf? ® 37 \)’0 ?G o> Y V.? 7 $7
SR D RO SN) SEEEG O R
N N o & N & o & ¢
FFNN XGB

I BBKNN B CCA E3 fastMNN EE Harmony CJ Ingest Bl SCTransform

Figure 3: Preprocessing audit of 6 integration methods on 48 benchmark datasets. Shown are the box plots of the distributions
of classification accuracy scores averaged across all class labels of each integrated dataset from same centers and platforms but
different preprocessing techniques. Datasets from 10X have 4 preprocessing methods and expected value of A—IL (red dashed line),
and datasets from C1, C1_HT, and ICELL_8 have 3 preprocessing methods with expected value of % (red dashed line). The top
row shows results for cancer cells (Cell Line A) by (A) FENN and (B) XGB auditors. The bottom row shows results for normal
cells (Cell Line B) by (C) FFNN and (D) XGB auditors. Audits are performed 100 times and results are averaged.

Automated Benchmarking and Selection of scRNA-seq Integration Methods

B

o
i

o
q\

Cell Line A kBET P-value
o
.?
—

S
nd

o
Q

o o I Iy
P 2 % =

Cell Line B kBET P-value

o
g

BCB ’23, September 3-6, 2023, Houston, TX, USA

=

Cell Line A Lisi/NumBatches

Cell Line B Lisi/NumBatches

o o o -
PS > % =)
=
—

o
)

0.6

0.4

0.2

0.0 B = = = = —

Q\/

mm BBKNN mm CCA == fastMNN mm Harmony 2 Ingest mmm SCTransform

Figure 4: Quantitative evaluation of batch correction of 6 integration methods on 48 benchmark datasets. Shown are the bar
plots of KBET P-Value scores (A, C) and normalized Lisi (B, D) of each integrated dataset from same centers and platforms but
different preprocessing techniques. The top row shows results for cancer cells (Cell Line A). The bottom row shows results for

normal cells (Cell Line B).

may be due to greater heterogeneity of cancer cells, which has
been noted previously [9, 37]. This finding is also supported by the
average kBET P-values and normalized Lisi scores of 0.57 and 0.89
for the cancer cell line compared with 0.69 and 0.92 for the normal
cell line (Figure 4). As expected, in the integration of 10X Genomics
datasets, larger uncorrected batch effects are observed for datasets
preprocessed using umitools and zumi, while cellranger2.1 and
cellranger3.0 datasets mixed well and have smaller residual batch
effects.

Second, cells sequenced using C1 and C1_HT are more challeng-
ing to BKNN, Harmony and Ingest than cells sequenced using 10X
Genomics and ICELLS, resulting in larger uncorrected batch effects
in the integrated data. A possible explanation for this result is that
integration methods have been optimized for 10X Genomics, which
is more prevalent that the other 3 sequencing platforms. However,
integration methods struggle to remove batch effects in some of the
10X Genomics datasets as well (Figure 3). Surprisingly, the integra-
tion results vary between sequencing centers, and cells sequenced
at NCI are more challenging to integrate than cells sequenced at
LLU. This finding is reproducible and consistent for cell lines se-
quenced individually (10X_NCI) and as mixtures (10X_NCI_M) at
NCIL.

Third, as previously reported, no single integration method out-
performs others on all datasets. ML-IMS results agree with kBET
and Lisi. For example, ML-IMS, kBET P-value, and normalized Lisi

find that Harmony has the worst performance in C1_FDA_HT
benchmark of cancer cell line, followed by BBKNN and Ingest. On
the other hand, there are several disagreements between kBET and
Lisi. For most datasets, normalized Lisi scores are high, indicat-
ing good integration. However, KBET P-value scores for some of
these datasets are very low, in particular for 10X Genomics datasets
(Figure 4).

The scrnabench benchmarks comprise cells of 2 well charac-
terized cell lines sequenced and preprocessed in a variety ways.
Therefore, they are suitable for the in-depth analysis of techni-
cal and biological variability encountered by different integration
methods. We integrate all datasets into one using Harmony and
perform ML-IMS audits of technical (centers, platforms, preprocess-
ing and datasets) and biological variability. We use Harmony for
computational efficiency. We find that technical variations were
identifiable beyond random chance in all audits (Table 1). Tech-
nology has higher batch effects than the sequencing center and
preprocessing methods and even the individual datasets can be de-
tected in the integrated data. Cells of 2 cell lines are well-separated
but overcorrected. Cell-line classification is 0.73 (FFNN) and 0.85
(XGB).

By default, ML-IMS works with 2-dimensional UMAP embed-
dings. The reason is because 2-dimensional UMAP embeddings are
commonly used in visualizations and downstream cluster analyses.

BCB 23, September 3-6, 2023, Houston, TX, USA

I
T

Accuracy

Konghao Zhao, Sapan Bhandari, Nathan P. Whitener, Jason M. Grayson and Natalia Khuri

FFNN Custom FFNN XGB Custom
C. bone_marrow D. ifnb
1.0 1.0
(] (]
‘
¢ +
0.8 i i 0.8
¢
§ g 0.64 N ’
3 g .
< i < 041
"""""""""""" BT o2 i
. N ey .S P
0.0 00{ ¢ &
FFNN XGB Custom FFNN XGB Custom
panc8 pbmcsca

mm BBKNN mm CCA =3 fastMNN E Harmony 3 Ingest BB SCTransform

Figure 5: Audit of 6 integration methods on 4 popular benchmark datasets. Shown are the box plots of the distributions of
classification accuracy scores averaged across all class labels of each integrated dataset: (A) bone_marrow, (B) ifnb, (C) panc8,
and (D) pbmcsca. Audits are performed 100 times and results are averaged for FFNN, XGB and custom (KNN) auditors.

A.

0161 Al

0.144
0.00200

0.00175
0.00150
0.00125
0.00100
0.00075
I 0.00050

0.00025

0.00000
bone_marrow

0.124

0.104

0.08+

kBET P-Value

0.06

0.04 panc8 pbmesca

0.024 1

0.00- —

ifnb bone_'marrow paﬁcS pbm'csca

Benchmarks

B.

Lisi / NumBatches

0.8
0.6
0.4+
0.2
0.0+
ifnb bone_marrow panc8 pbmcesca
Benchmarks

= BBKNN mmm CCA == fastMNN @3 Harmony T Ingest Bmm SCTransform

Figure 6: Quantitative evaluation of batch correction of 6 integration methods on 4 popular benchmark datasets. Shown are
the bar plots of KBET P-Value (A) and normalized Lisi (B) of ifnb, bone_marrow, panc8, and pbmcsca. Inset (A.1) shows KBET

P-Value scores of bone_marrow, panc8, and pbmcsca.

We examine how ML-IMS results change for different represen-
tation of Harmony-integrated and non-integrated data. Harmony
performs principal component analysis (pca) first and then trans-
forms 30 principal components into harmonized embeddings of size
30, followed by UMAP. Classification accuracy increases when 30
harmony embeddings are used to train auditors instead of UMAP
(Table 1). When we apply UMAP directly to principal components
and audit non-integrated data, we observe higher classification accu-
racy of batch effects than that of UMAP embeddings of harmonized

data. However, cell-lines are better classified in non-integrated
data and dimensionality reduction of Harmony embeddings using
UMAP makes it harder to classify the biological variability.

We also validate ML-IMS on 4 benchmark datasets of past bench-
marking studies, such as bone_marrow, ifnb, panc8 and pbmcsa. We
confirm that no integration method performs best on all datasets
(Figure 5). BBKNN and Ingest have greater uncorrected batch effects
than other methods, while CCA, Harmony and SCTransform pro-
duce better results. Our audits reveal that integrated batches remain

Automated Benchmarking and Selection of scRNA-seq Integration Methods

BCB ’23, September 3-6, 2023, Houston, TX, USA

Table 1: Audit of 24 10X Genomics datasets. For each data preparation type (rows), shown are the size and dimension of training
and test subsets and average accuracy of classifying 4 sequencing centers, 4 sequencing technologies, 7 preprocessing methods,
48 datasets and 2 cell lines. Expected classification accuracy is shown in parentheses. HGV, PCA, PCA+UMAP report results for
non-integrated data and PCA+HARMONY and PCA+HARMONY+UMAP report results of Harmony integration of 24 datasets.

Size & dimension Center (0.25) Technology (0.25) Preprocessing (0.14) Dataset (0.02) Cell line (0.5)
Data Preparation Training Test FFNN XGB FFNN XGB FFNN XGB FFNN XGB FFNN XGB
HVG (2268, 2000) (630, 2000) 0.990 0.983 0.997 0.995 0.850 0.856 0.738 0.681 0.999 0.998
PCA (2268, 30) (630, 30) 0.993 0982 0.998 0.994 0.834 0.810 0.658 0.551 0.999 0.997
PCA+UMAP (2268, 2) (630, 2) 0.801 0.944 0.939 0.996 0.471 0.628 0.259 0.411 0.951 0.998
PCA+HARMONY (2268, 30) (630, 30) 0.811 0.829 0.948 0.957 0.441 0.424 0.258 0.207 0936 0.923
PCA+HARMONY+UMAP (2268, 2) (630, 2) 0.473 0.569 0.620 0.707 0.197 0.205 0.058 0.096 0.732 0.845

well discernible regardless of the integration method. The average
classification accuracy of batches in each benchmark dataset and for
each integration method is higher than expected. For example, in
pancs8 integration, both auditors flag celseq and smartseq2 batches
as having the largest residual batch effects in all integrations, except
for Harmony. In the integration of bone_marrow, auditors agree
that batch effects are not fully corrected for MantonCB1, 3, and
8. In the pbmcsca integration, batches sequenced using inDrops,
10x Chromium (v2) A, Drop-seq, and 10x Chromium (v2) are not
well-mixed with the other batches.

Absolute scores of kKBET P-value and Lisi agree with these results,
with some exceptions. First, based on kBET P-value, CCA has the
best performance in ifnb integration, and fastMNN performs best
in panc8 and pbmcsca integrations (Figure 6A). Due to its high
sensitivity, KBET P-value generates 0 for all integration methods in
the bone_marrow benchmark, making it impossible to determine
the best integration method using this metric. On the other hand,
normalized Lisi suggests that SCTransform is the best integration
method for ifnb, panc8 and pbmcsca, and Harmony is the best
integration method for bone_marrow (Figure 6B), reaching the
same conclusion as the ML-IMS.

The greatest disagreement between ML-IMS and existing metrics
is observed for the ifnb benchmark. This benchmark comprises 2
batches of control and stimulated cells. Relative to other bench-
mark datasets, KBET P-value and normalized Lisi scores are higher
for ifnb, suggesting better batch effect correction. Both ML-IMS
auditors, however, report residual batch effects for all integration
methods, suggesting that differences between control and stimu-
lated cells persist in the integrated data. This is supported by the
qualitative evaluation as well. While the projection of the integrated
data onto 2-dimensional UMAP embeddings shows good overlaps
between control and stimulated cells, detailed visual inspections
reveal that several areas contain cells from one batch only, which
is picked by the ML-IMS auditors

We note that FFNN and XGB do not always agree in their audits.
For instance, FFNN and XGB auditors fully agree on bone_marrow
and ifnb. On the other hand, XGB detects larger uncorrected batch
effects in panc8 and pbmcsa. Additionally, FFNN auditors suggest
Harmony as the best integration method for all datasets, whereas
XGB recommends Harmony for bone_marrow only, and SCTrans-
form for the remaining datasets. We attribute the superiority of
SCTransform to its being one of the most recent integration meth-
ods. However, it is the most compute-intensive method. Among

4 benchmark datasets, panc8 is the most challenging to integrate,
while cells of pbmcsca are well mixed by most integration methods
(Table 2). Better integration of pbmcsca benchmark with 7 batches
compared to panc8 with 4 batches is not surprising because this
benchmark is overused in the bioinformatics research. Several in-
tegration methods use it to tune their algorithms and hence, it
is expected that their performance will be more accurate on this
dataset.

Using ML-IMS programming interface, we added a third auditor,
kNN, and repeated experiments. Our results show that this custom
auditor fully agrees with XGB on ifnb. On 3 other benchmarks,
kNN produces results similar to XGB but with lower estimates of
uncorrected batch effects (Figure 5). To smooth possible disagree-
ments between the different auditors, ML-IMS employs an ensemble
approach to automatically select the best integration (Table 2).

One practical limitation of ML-IMS is the computational time of
executing 100 audits. For example, the running time and maximum
memory consumption of performing audits on ifnb, pbmcsca, and
panc8 are 2.26 hours (4.8 Gigabytes), 1.63 hours (5.2 Gigabytes), and
1.14 hours (4.9 Gigabytes). However, we find that while 100 audits
provide statistical power, in most practical applications, 10 audits
provide similar results, thus, significantly reducing the compute
time. In addition, ML-IMS package supports parallel execution.

5 CONCLUSION

This work presented a new method for the automated selection
of the best integration of scRNA-seq datasets. ML-IMS repeatedly
trains an ensemble of supervised machine learning classifiers that
learn how to recognize the technical or biological variability of in-
tegrated cells in low dimensions. Motivated by the need of the end
users to compare and contrast data integrated using existing and
emergent techniques, ML-IMS can also be used in benchmarking
studies to examine algorithmic biases of integration methods and
to rank the performance of different tools. ML-IMS provides a con-
venient and interpretable threshold for the expected classification
accuracy, and the package can be extended by adding, removing or
substituting default auditors. Because ML-IMS is not distance-based,
it can perform audits of integrated data of higher dimensions and
it does not suffer from the curse of dimensionality. By employing
ML-IMS, researchers can save time and effort in selecting suitable
integration methods for their specific datasets, thereby improving
the efficiency and quality of scRNA-seq data downstream analysis.

BCB 23, September 3-6, 2023, Houston, TX, USA

Table 2: IMS scores of different ensembles of auditors. Shown
are the IMS scores of 4 benchmarks integrated using 6 meth-
ods. Different ensembles of auditors, include FFNN (F), XGB
(X), and KNN (K). The best integration selected by each en-
semble is shown in boldface.

Integrations F X K F+X F+K X+K F+X+K
2 CCA 0.069 0.079 0.006 0.074 0.038 0.042 0.052
g SCTransform 0.081 0.089 0.011 0.086 0.045 0.050 0.060
g Harmony 0.062 0.079 0.002 0.071 0.032 0.040 0.048
o fastMNN 0.155 0.156 0.015 0.155 0.085 0.086 0.109
E BBKNN 0.309 0.284 0.176 0301 0.243 0.238 0.258
Ingest 0.158 0.179 0.025 0.170 0.092 0.103 0.122
CCA 0.059 0.057 0.068 0.059 0.057 0.060 0.060
SCTransform 0.032 0.027 0.044 0.033 0.039 0.033 0.035
v@ Harmony 0.039 0.080 0.099 0.057 0.066 0.083 0.067
= fastMNN 0.220 0216 0.225 0.219 0226 0.226 0.224
BBKNN 0.274 0411 0428 0344 0.350 0.421 0.371
Ingest 0.121 0.144 0.164 0.135 0.140 0.149 0.146
CCA 0.168 0.200 0.161 0.178 0.152 0.179 0.182
SCTransform 0.143 0.134 0.092 0.138 0.124 0.102 0.114
°<§ Harmony 0.124 0.190 0.180 0.170 0.165 0.188 0.169
8, fastMNN 0.193 0.218 0.202 0.212 0.189 0.213 0.213
BBKNN 0.235 0471 049 0357 0359 0.492 0.400
Ingest 0.239 0371 0350 0.289 0.290 0.342 0.306
CCA 0.091 0.082 0.025 0.086 0.063 0.050 0.066
8 SCTransform 0.093 0.068 0.011 0.073 0.050 0.040 0.055
¢ Harmony 0.089 0.160 0.109 0.139 0.111 0.134 0.128
E fastMNN 0.120 0.166 0.098 0.148 0.109 0.135 0.132
S BBKNN 0.192 0313 0.244 0.253 0.228 0.300 0.243
Ingest 0.136 0.210 0.135 0.164 0.125 0.171 0.158

In the future, we plan to implement an additional functionality
which will simultaneously perform audits of technical and biolog-
ical variability using multi-label classification. The package will
also be ported to the R programming language and incorporated
into the scrnabench package.

ACKNOWLEDGEMENTS

This research was partially supported by the Pilot Award from the
Wake Forest Center for Biomedical Informatics. The authors ac-
knowledge the Distributed Environment for Academic Computing
(DEAC) at Wake Forest University for providing HPC resources
that have contributed to the research results reported within this

paper.

REFERENCES

[1] Martin Abadi et al. 2015. TensorFlow: Large-Scale Machine Learning on Hetero-

[2

(3

]
]

geneous Systems. https://www.tensorflow.org/

Elham Azizi et al. 2018. Single-Cell Map of Diverse Immune Phenotypes in the
Breast Tumor Microenvironment. Cell 174, 5 (Aug 2018), 1293-1308.e36.

Sapan Bhandari et al. 2022. Multi-Target Integration and Annotation of Single-
Cell RNA-Sequencing Data. In Proceedings of the 13th ACM International Confer-
ence on Bioinformatics, Computational Biology and Health Informatics (Northbrook,
Illinois) (BCB °22). Association for Computing Machinery, New York, NY, USA,
Article 29, 4 pages.

Andrew Butler et al. 2018. Integrating single-cell transcriptomic data across
different conditions, technologies, and species. Nature Biotechnology 36, 55 (May
2018), 411-420.

Maren Biittner et al. 2019. A test metric for assessing single-cell RNA-seq batch
correction. Nature methods 16, 1 (2019), 43-49.

Ruben Chazarra-Gil et al. 2021. Flexible comparison of batch correction methods
for single-cell RNA-seq using BatchBench. 49 (Feb 2021), e42.

[7]

(8]

[9]

(10]

=
&,

[32

(33]
(34]

[35

(36]

@
=

[38

[39

Konghao Zhao, Sapan Bhandari, Nathan P. Whitener, Jason M. Grayson and Natalia Khuri

Tiangi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD ’16). Association for Computing
Machinery, New York, NY, USA, 785-794.

Wangiu Chen et al. 2021. A multicenter study benchmarking single-cell RNA
sequencing technologies using reference samples. Nature Biotechnology 39, 9
(2021), 1103-1114.

Xin Chen et al. 2021. A multi-center cross-platform single-cell RNA sequencing
reference dataset. Scientific data 8, 1 (2021), 1-11.

Jiarui Ding et al. 2020. Systematic comparison of single-cell and single-nucleus
RNA-sequencing methods. Nature Biotechnology 38, 6 (Jun 2020), 737-746.
Dominic Griin et al. 2016. De Novo Prediction of Stem Cell Identity using Single-
Cell Transcriptome Data. Cell Stem Cell 19, 2 (Aug 2016), 266-277.

Christoph Hafemeister and Rahul Satija. 2019. Normalization and variance
stabilization of single-cell RNA-seq data using regularized negative binomial
regression. Genome Biology 20, 1 (Dec 2019), 296.

Laleh Haghverdi et al. 2018. Batch effects in single-cell RNA-sequencing data are
corrected by matching mutual nearest neighbors. Nature Biotechnology 36, 55
(May 2018), 421-427.

Stephanie C Hicks et al. 2018. Missing data and technical variability in single-cell
RNA-sequencing experiments. Biostatistics 19, 4 (Oct 2018), 562-578.
Dragomirka Jovic et al. 2022. Single-cell RNA sequencing technologies and
applications: A brief overview. Clinical and Translational Medicine 12, 3 (2022),
e694.

Hyun Min Kang et al. 2018. Multiplexed droplet single-cell RNA-sequencing
using natural genetic variation. Nature Biotechnology 36, 11 (Jan 2018), 89-94.
Ilya Korsunsky et al. 2019. Fast, sensitive and accurate integration of single-cell
data with Harmony. Nature Methods 16, 1212 (Dec 2019), 1289-1296.

Ilya Korsunsky et al. 2023. Methods to compute Local Inverse Simpson’s Index
(LISI). https://github.com/immunogenomics/LISI

Malte D Luecken et al. 2022. Benchmarking atlas-level data integration in single-
cell genomics. Nature methods 19, 1 (2022), 41-50.

Feiyang Ma and Matteo Pellegrini. 2020. ACTINN: automated identification of
cell types in single cell RNA sequencing. Bioinformatics 36, 2 (2020), 533-538.
Evan Z. Macosko et al. 2015. Highly Parallel Genome-wide Expression Profiling
of Individual Cells Using Nanoliter Droplets. Cell 161, 5 (May 2015), 1202-1214.
F. Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. Journal of
Machine Learning Research 12 (2011), 2825-2830.

Krzysztof Polanski et al. 2020. BBKNN: fast batch alignment of single cell tran-
scriptomes. Bioinformatics 36, 3 (Feb 2020), 964-965.

Ren Qi et al. 2020. Clustering and classification methods for single-cell RNA-
sequencing data. Briefings in bioinformatics 21, 4 (2020), 1196-1208.

Aviv Regev et al. 2017. The human cell atlas. elife 6 (2017), e27041.

Satijalab. 2023. Dataset distribution for Seurat. https://github.com/satijalab/
seurat-data

C. E. Shannon. 1948. A mathematical theory of communication. The Bell System
Technical Journal 27, 3 (Jul 1948), 379-423.

Tim Stuart et al. 2019. Comprehensive Integration of Single-Cell Data. Cell 177,
7 (Jun 2019), 1888-1902.¢21.

Tim Stuart and Rahul Satija. 2019. Integrative single-cell analysis. Nature Reviews
Genetics 20, 55 (May 2019), 257-272.

Valentine Svensson, Roser Vento-Tormo, and Sarah A. Teichmann. 2018. Expo-
nential scaling of single-cell RNA-seq in the past decade. Nature Protocols 13, 44
(Apr 2018), 599-604.

Yugi Tan and Patrick Cahan. 2019. SingleCellNet: a computational tool to classify
single cell RNA-Seq data across platforms and across species. Cell systems 9, 2
(2019), 207-213.

Antonio Torralba and Alexei A. Efros. 2011. Unbiased look at dataset bias. In
CVPR 2011. 1521-1528.

Hoa Thi Nhu Tran et al. 2020. A benchmark of batch-effect correction methods
for single-cell RNA sequencing data. Genome Biology 21, 1 (Jan 2020), 12.
Po-Yuan Tung et al. 2017. Batch effects and the effective design of single-cell
gene expression studies. Scientific Reports 7, 11 (Jan 2017), 39921.

Nathan Whitener and Konghao Zhao. 2023. Scrnabench: A package for metamor-
phic benchmarking of scRNA-seq data analysis methods. https://github.com/
NWhitener/scrnabench

F. Alexander Wolf, Philipp Angerer, and Fabian J. Theis. 2018. SCANPY: large-
scale single-cell gene expression data analysis. Genome Biology 19, 1 (Feb 2018),
15.

Konghao Zhao, Jason M. Grayson, and Natalia Khuri. 2023. Multi-Objective
Genetic Algorithm for Cluster Analysis of Single-Cell Transcriptomes. Journal
of Personalized Medicine 13, 2 (2023).

Grace X. Y. Zheng et al. 2017. Massively parallel digital transcriptional profiling
of single cells. Nature Communications 8, 11 (Jan 2017), 14049.

Bin Zou et al. 2021. deepMNN: Deep Learning-Based Single-Cell RNA Sequencing
Data Batch Correction Using Mutual Nearest Neighbors. Frontiers in Genetics 12
(2021).

https://www.tensorflow.org/
https://github.com/immunogenomics/LISI
https://github.com/satijalab/seurat-data
https://github.com/satijalab/seurat-data
https://github.com/NWhitener/scrnabench
https://github.com/NWhitener/scrnabench

	Abstract
	1 Introduction
	2 prior and relevant work
	3 Methods and data
	3.1 Proposed Method
	3.2 Implementation Details
	3.3 Datasets
	3.4 Additional Metrics

	4 Results
	5 Conclusion
	References

